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1 MOTIVATION

Recommender systems (RSs) affect many aspects of our lives, deciding which content we are exposed to online, which
items to buy, or which movies to watch. With the ever increasing adoption of — mostly opaque — deep learning
technology in RSs, concerns about the trustworthiness of RSs have emerged. In particular, questions related to fairness,
non-discrimination, diversity, transparency, privacy, and security have been the focus of the public debate and recent
studies, e.g. [7, 9, 10]. At the same time, research on trustworthy RSs that ensure (at least some of) these properties has
gained significant momentum in the past few years, e.g. [9, 12, 25].

Addressing the increasing interest in trustworthiness aspects of RSs, the tutorial will equip the mostly technical
audience of UMAP with the necessary understanding of the ethical implications of their research and development, as
well as political and legal regulations that address the aforementioned challenges. As for these regulations, we will
provide an overview of recent plans and policies to regulate AI technology, and their consequences for the various
stakeholders of RSs . Since the European Union has recently adopted novel regulations related to AI technologies
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(notably, the Digital Service Act,1 Digital Markets Act,2 and AI Act3), we will foremost discuss regulatory efforts taking
a European perspective. Nevertheless, we will also discuss initiatives outside of Europe, particularly in the US and
China. Given the importance and relevance of the topics addressed, we expect the tutorial to attract a global audience.

2 TUTORIAL OUTLINE

The tutorial is organized into five parts: an introduction including ethical guidelines for trustworthy AI and their
adoption in regulatory approaches; three subsequent parts corresponding to the main themes addressed, i.e., fairness
and non-discrimination; privacy and security; transparency and explainability; rounded off with a discussion of open
challenges. Throughout these three parts, we discuss three perspectives: the system-centric perspective, the human-
centric perspective, and the legal perspective, covering technical aspects, human needs, and legislators’ points of view,
respectively. More precisely, the tutorial covers the following aspects and is organized accordingly:

(1) Introduction
We provide details on the tutorial background, motivation, objectives, relevance for the scientific community,
and recent political and legal regulations.

(a) Ethics guidelines for trustworthy AI : We introduce the seven key requirements for trustworthy AI and discuss
how they apply to RSs. We provide examples of related scientific publications and outline the specific challenges
that need to be addressed.

(b) From ethics guidelines to regulatory approaches: We discuss the translation of ethics guidelines to legal require-
ments, with a focus on current EU regulations, in particular the AI Act and Digital Services Act.

(2) Fairness and Non-discrimination
(a) Stakeholders: We discuss the various stakeholders of recommender systems, approaching the question for

whom the system should be fair.
(b) Definition and quantification of bias and fairness: We introduce the various kinds of bias and fairness concepts

and definitions that are relevant for RSs research, along different axes (e.g., societal vs. statistical biases, model
vs. presentation bias, provider vs. consumer fairness); we review the most common measures and metrics to
quantify bias and fairness; we discuss their relation to political and legal regulations.

(c) Algorithms to mitigate biases and improve fairness:We categorize the main strategies to mitigate harmful biases
and improve fairness of RSs, e.g., into pre-, in-, and post-processing techniques; we present concrete methods
for each of these categories.

(d) Technical versus ethical and legal perspectives: We discuss how the regulatory and legal frameworks align with
the operationalization of fairness according to formal definitions often found in RSs research.

(3) Privacy and Security
(a) Privacy risks in recommender systems: We discuss the potential privacy risks associated with RSs, such as data

leakage and disclosure of sensitive information.
(b) Privacy-preserving techniques: We introduce relevant privacy-preserving techniques and privacy-by-design

learning paradigms, including: anonymization (e.g., k-anonymity and differential privacy to protect user

1https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
2https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/digital-markets-act-ensuring-fair-and-open-digital-
markets_en
3https://artificialintelligenceact.eu
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identities); federated learning (different learning paradigms to protect individual user preferences); secure multi-
party computation (techniques that allow collaborative computation without exposing sensitive information).

(c) Security of recommendation models:We discuss different types of attacks against RSs, including: profile injection
(manipulating user profiles to influence recommendations); shilling attacks (creating fake accounts or profiles to
bias recommendations); data poisoning (injecting malicious data to manipulate the recommendation algorithm);
sybil attacks (creating multiple fake identities to impact recommendations); evasion attacks (manipulating
the recommendation process by providing misleading or deceptive input); adversarial learning (exploiting
vulnerabilities in recommendation algorithms and models).

(d) Defense mechanisms: We present various defense mechanisms and countermeasures against attacks in RSs,
including robust modeling to build more resilient models, such as adversarial training and outlier detection,
methods to identify and filter out malicious or low-quality data to prevent poisoning attacks, and approaches
that dynamically adapt recommendations based on user feedback, mitigating the impact of adversarial attacks.

(4) Transparency
(a) Categories of transparency: We introduce the major aspects of transparency, as they relate to building trust

in RS technology; we focus on explainability, traceability, and communication; we review and clarify the
terminology.

(b) Explainability and justification: We discuss major strategies to achieve explainability of RSs technology, i.e.,
provide means to understand how the system works, targeting different stakeholders (e.g., developers vs. end
users); we review approaches to provide justifications, i.e., mechanisms for the system to justify why a system
outputs a certain (list of) documents or items.

(c) Traceability and auditability: We discuss strategies to keep track of the behavior of a system in a chronological
way, in particular with the aim of facilitating auditing. We also point to recent works that discuss legal
groundings and consequences of algorithmic auditing approaches, which is a still under-researched topic.

(d) Communication and logs: We discuss the importance of documenting the development process, the resulting
models, system capabilities, intended use, and limitations.

(5) Open Challenges
(a) Understanding the discrepancy between (1) bias, fairness, and diversity metrics, (2) human perception of these

aspects and factors influencing this perception, and (3) regulatory frameworks.
(b) Understanding the capabilities and limitations of existing technical solutions in terms of fairness, diversity,

and transparency.
(c) Taking a multistakeholder perspective when developing solutions for fairness, privacy, security, and trans-

parency in RS technology.
(d) Improving the communication between the different stakeholders and between relevant research communities,

including computer science, law, ethics, economy, sociology, psychology, in order to foster interdisciplinarity.

The tutorial will be supported by a GitHub repository, containing all usedmaterials: https://github.com/socialcomplab/
Trustworthy-RS-Tutorial-UMAP24.

3 BIOGRAPHIES OF PRESENTERS

Markus Schedl (http://www.mschedl.eu) is a full professor at the Johannes Kepler University Linz (JKU), affiliated with
the Institute of Computational Perception, leading the Multimedia Mining and Search group and the Human-centered
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AI group at the Linz Institute of Technology (LIT) AI Lab. His research interests include recommender systems, user
modeling, information retrieval, machine learning, multimedia processing, and trustworthy AI (e.g., [9, 16, 19, 20]).

Vito Walter Anelli (https://sisinflab.poliba.it/people/vito-walter-anelli) is an assistant professor at Polytechnic Univer-
sity of Bari, affiliated with the Information Systems Laboratory (SisInfLab). His current research interests fall in the
areas of recommender systems, knowledge representation, and user modeling (e.g, [1–6, 8, 11, 22]).

Elisabeth Lex (https://elisabethlex.info) is an associate professor at Graz University of Technology (TUG) and PI of
the Recommender Systems and Social Computing Lab at the Institute of Interactive Systems and Data Science. Her
research interests include recommender systems, user modeling, information retrieval, and data science (e.g., [13–
15, 17, 18, 21, 23, 24, 26]).

Please also note that the presenters of the tutorial are currently co-authoring a book titled Information Retrieval and

Recommender Systems: Technical, Ethical, and Regulatory Perspectives, which is expected for publication by Springer at
the end of 2024.
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