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ABSTRACT
This tutorial aims at providing its audience an interdisciplinary
overview about the topics of fairness and non-discrimination, di-
versity, and transparency as relevant dimensions of trustworthy
AI systems, tailored to algorithmic ranking systems such as search
engines and recommender systems. We will equip the mostly tech-
nical audience of WSDM with the necessary understanding of the
social and ethical implications of their research and development on
the one hand, and of recent ethical guidelines and regulatory frame-
works addressing the aforementioned dimensions on the other hand.
While the tutorial foremost takes a European perspective, starting
from the concept of trustworthy AI and discussing EU regulation in
this area currently in the implementation stages, we also consider
related initiatives worldwide. Since ensuring non-discrimination,
diversity, and transparency in retrieval and recommendation sys-
tems is an endeavor in which academic institutions and companies
in different parts of the world should collaborate, this tutorial is
relevant for researchers and practitioners interested in the ethical,
social, and legal impact of their work. The tutorial, therefore, tar-
gets both academic scholars and practitioners around the globe,
by reviewing recent research and providing practical examples ad-
dressing these particular trustworthiness aspects, and showcasing
how new regulations affect the audience’s daily work.

CCS CONCEPTS
• Information systems → Recommender systems; Document
filtering; • Applied computing → Law, social and behavioral
sciences.
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1 INTRODUCTION
Algorithmic ranking systems researched in the fields of information
retrieval (IR) and recommender systems (RSs) affect many aspects
of our daily lives, deciding which content we are exposed to on the
web or social media platforms, which products to buy, or which
music to listen to. With the ever increasing adoption of — mostly
opaque — machine and deep learning technology in such systems,
many concerns about their trustworthiness have emerged. In partic-
ular, questions related to fairness, non-discrimination, diversity, and
transparency have recently been in the focus of the public debate
as well as discussed in many recent research articles, e.g., [4, 8, 9].

Since the aforementioned issues in algorithmic ranking systems
affect and are influenced by many stakeholders, e.g., researchers, de-
velopers, end users, service providers, policymakers, and economists,
they call for an interdisciplinary treatment, involving the disciplines
of artificial intelligence, computer science, ethics, law, and politics,
just to mention a few. Acknowledging these facts, the tutorial takes
an interdisciplinary approach. Nevertheless, we particularly tailor
our discussion of these topics to the WSDM community, especially
experts in web search and recommender systems.

The tutorial is supported by a GitHub repository, containing
the tutorial slides with references to all discussed research: https://
github.com/socialcomplab/Trustworthy-ARS-Tutorial-WSDM22.

2 TOPICS
The tutorial addresses trustworthy AI with a focus on fairness and
non-discrimination, diversity, and transparency in algorithmic rank-
ing systems in an interdisciplinary manner. The concept of trust-
worthy AI was proposed in 2019 by the High Level Expert Group
appointed by the European Commission and composed of experts
from academia, industry and civil society. Their Ethics Guidelines
define seven key requirements that AI systems should meet in or-
der to be trustworthy [12]: (1) human agency and oversight; (2)
technical robustness and safety; (3) privacy and data governance;
(4) transparency; (5) diversity, non-discrimination, and fairness; (6)
societal and environmental well-being; and (7) accountability.

Fairness and non-discrimination: The discussion has been
fueled by findings of recent studies that identified harmful biases
in data, algorithmic behavior, and corresponding lists of retrieved
documents and recommended items, e.g., [5, 13, 19, 20, 23, 33, 44].
These biases can result in unfair treatment or even discrimination
against certain users or groups of users, e.g., with respect to their
gender [19], age [35], or personality traits [25]. In some, but not all,
cases such algorithmic behavior is illegal [9, 42].

Diversity: Studies have shown the value of diversity to improve
innovation and excellence in research [39]. In the context of AI,
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several policy reports and experts [12, 41] have suggested incor-
porating diversity in the development process. Diversity refers to
the existence of variations of different characteristics among indi-
viduals, such as gender, age, race, religion, or cultural background,
being related to the fairness principle mentioned above. Retrieval
and recommender systems should then incorporate a diversity of
perspectives in research and development (e.g., through diverse
research communities [11], developing teams or user groups) and
make sure that developed technology provides an equal outcome
for all potential stakeholders. Note that this does not only apply to
the research communities and development teams, but in an IR and
RSs context also to content producers (e.g., diversity of authors of
web documents that are retrieved, or music artists whose songs are
recommended).

Transparency: Transparency has been defined as a means for
trust in technology and involves different concepts such as explain-
ability, traceability, and communication [12, 37, 38, 43]. Explain-
ability concerns the ability to explain the technical process of an
AI system (i.e., provide the means for humans to understand and
trace the outputs of the system) and the related human decisions
(e.g., application domain or task to be solved), e.g., [29, 40]. These
explanations should be adapted to different expertise levels, from
developers to end users of the system. The related concept of justi-
fication refers to the requirement of a retrieval or recommendation
system, in our case, to justify why a certain document or item was
presented to the user, e.g., [1, 6]. Traceability allows keeping track
of the behavior of a system in a chronological way, and facilitates
auditability, i.e., the ethical assessment of algorithms to investi-
gate potentially harmful consequences such as if an algorithm is
biased or exhibits discriminatory behavior [2]. Finally, the concept
of communication incorporates the idea of documenting the system
development process, capabilities, and limitations [27, 31].

The importance of these topics is further highlighted by many
recent guidelines, regulations, and policies, as discussed in [8, 30].
For instance, in the EU context, we can rely on the EU Charter
of Fundamental Rights1 [10], EU Ethical Principles for Trustworthy
AI2 [12], Regulatory Framework for AI,3 and the Digital Service Act4,
which all strongly refer to retrieval and recommendation systems.
In the US context, the Platform Accountability and Transparency Act
(PATA),5 proposed by several US senators, requires large platforms
to make data available to support scientific research and oversight
connected to data-driven algorithms; and California recently re-
leased a Regulation on Automated Decision Systems for Employment
and Housing.6 The Chinese government has recently rolled out
several documents on governance of AI technology.7

1https://ec.europa.eu/info/aid-development-cooperation-fundamental-rights/your-
rights-eu/eu-charter-fundamental-rights_en
2https://op.europa.eu/en/publication-detail/-/publication/d3988569-0434-11ea-8c1f-
01aa75ed71a1
3https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
4https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
5http://www.coons.senate.gov/download/text-pata-117
6https://www.dfeh.ca.gov/wp-content/uploads/sites/32/2022/03/AttachB-
ModtoEmployRegAutomated-DecisionSystems.pdf
7https://carnegieendowment.org/2022/01/04/china-s-new-ai-governance-initiatives-
shouldn-t-be-ignored-pub-86127

3 FORMAT AND ORGANIZATION
The tutorial is organized into five parts: an introduction includ-
ing ethical guidelines for trustworthy AI and their adoption in
regulatory approaches; three subsequent parts corresponding to
the main themes addressed, i.e., fairness and non-discrimination,
diversity, and transparency; and a discussion of open challenges.
Throughout the three main parts, we discuss three perspectives:
the system-centric perspective, the human-centric perspective, and
the legal perspective, covering technical aspects, human needs, and
legislators’ points of view, respectively. More precisely, the tutorial
covers the following aspects and is organized accordingly:

(1) Introduction
We provide details on the tutorial background, motivation,
objectives, relevance for the scientific community, and recent
political and legal regulations.
(a) Ethics guidelines for trustworthy AI : We introduce the
seven requirements for trustworthyAI and how they relate
to ranking systems, in particular IR and RSs. We provide
examples of related scientific publications and outline the
specific challenges that need to be addressed.

(b) From ethics guidelines to regulatory approaches: an EU per-
spective. We discuss the translation of ethics guidelines to
legal requirements, with a focus on current EU regulations,
in particular the AI Act8 and Digital Services Act.9

(2) Fairness and Non-discrimination
(a) Stakeholders: We discuss the various stakeholders of re-
trieval and recommender systems, approaching the ques-
tion for whom the system should be fair.

(b) Definition and quantification of bias and fairness: We in-
troduce the various kinds of bias and fairness concepts and
definitions that are relevant for IR and RS research, along
different axes (e.g., societal vs. statistical biases, model
vs. presentation bias, provider vs. consumer fairness); we
review the most common measures and metrics to quan-
tify bias and fairness; we discuss their relation to political
and legal regulations.

(c) Algorithms to mitigate biases and improve fairness: We
categorize the main strategies to mitigate harmful biases
and improve fairness of retrieval and recommender sys-
tems, e.g., into pre-, in-, and post-processing techniques;
we present concrete methods for each of these categories.

(d) Technical versus ethical and legal perspectives:We discuss
how the regulatory and legal frameworks align with the
operationalization of fairness according to formal defini-
tions often found in IR and RS research.

(3) Diversity
(a) Categories of diversity: We introduce and discuss various
kinds of diversity, i.e., personnel diversity in the research
community and development teams, but also diversity in
terms of the creators of content that can be retrieved or
recommended.

(b) Diversity axes:We elaborate on important groups or axes
of diversity, including adults to children (age), frommen to
women to diverse genders, from western to non-western

8https://artificialintelligenceact.eu
9https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
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(culture), minority groups (e.g., indigenous people) and
scientific disciplines.

(c) Diversity in the research community:We present statistics
of diversity aspects in the IR and RS communities, and
ideas how to increase diversity.

(d) Integrating diversity in evaluation: We present strategies
for considering diversity in the evaluation of IR and RS
algorithms, in terms of adopted metrics, participants in
user evaluations, and perspectives.

(4) Transparency
(a) Categories of transparency: We introduce the major as-
pects of transparency, as they relate to building trust in
IR and RS technology; we focus on explainability, trace-
ability, and communication; we review and clarify the
terminology.

(b) Explainability and justification: We discuss major strate-
gies to achieve explainability of IR and RS technology,
i.e., provide means to understand how the system works,
targeting different stakeholders (e.g., developers vs. end
users); we review approaches to provide justifications, i.e.,
mechanisms for the system to justify why a system out-
puts a certain (list of) documents or items.

(c) Traceability and auditability: We discuss strategies to
keep track of the behavior of a system in a chronological
way, in particular with the aim of facilitating auditing.
We also point to recent works that discuss legal ground-
ings and consequences of algorithmic auditing approaches,
which is an under-researched topic to date [26].

(d) Communication and logs: We discuss the importance of
documenting the development process, the resulting mod-
els, system capabilities, intended use, and limitations.

(5) Open Challenges
(a) Understanding the discrepancy between (1) bias, fair-
ness, and diversity metrics, (2) human perception of these
aspects and factors influencing this perception, and (3)
regulatory frameworks.

(b) Understanding the capabilities and limitations of exist-
ing technical solutions in terms of fairness, diversity, and
transparency.

(c) Taking a multistakeholder perspective when developing
solutions for fairness, diversity, and transparency in IR
and RS technology.

(d) Improving the communication between the different
stakeholders and between relevant research communities,
including computer science, law, ethics, economy, sociol-
ogy, psychology, in order to foster interdisciplinarity.

4 BIOGRAPHIES OF PRESENTERS
Markus Schedl (http://www.mschedl.eu) is a full professor at the
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